Uva 10311 - Goldbach and Euler
Problem Link :: Uva Goldbach and Euler
Code:: goes to below.....
Code:: goes to below.....
/*
Verdict :: Accepted
Time :: 0.176
****** The best Rank (3rd) i have ever got in Uva online judge.
to Solve that Problem..*******
*/
/// Header file begin
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <cmath>
#include <cctype>
#include <sstream>
#include <set>
#include <list>
#include <stack>
#include<utility>
#include <queue>
#include <algorithm>
/// End
//..........
/// Macro
#define sf scanf
#define pf printf
#define sfint(a,b) scanf("%d %d",&a,&b)
#define sfl(a,b) scanf("%ld %ld",&a,&b)
#define sfll(a,b) scanf("%lld %lld",&a,&b)
#define sfd(a,b) scanf("%lf %lf",&a,&b)
#define sff(a,b) scanf("%f %f",&a,&b)
#define lp1(i,n) for(i=0;i<n;i++)
#define lp2(i,n) for(i=1;i<=n;i++)
#define mem(c,v) memset(c,v,sizeof(c))
#define cp(a) cout<<" "<<a<<" "<<endl
#define nl puts("")
#define sq(x) ((x)*(x))
#define all(x) x.begin(),x.end()
#define sz size()
#define gc getchar()
#define pb push_back
/// End.........
/// Size
#define mx7 20000100
#define mx6 1500000
#define mx5 100005
#define mx4 100001000
#define inf 1<<30 //infinity value
#define eps 1e-9
#define mx (65540)
#define mod 1000000007
#define pi acos(-1.0)
/// Macros for Graph
#define white 0
#define gray 1
#define black -1
#define nil -2
using namespace std;
//..................................................................................................................
typedef long long LL;
typedef long L;
typedef unsigned long long ull;
typedef unsigned long ul;
typedef unsigned int ui;
typedef pair<int, int> pii;
template<class T> T gcd(T a, T b ) {return b<=0?a:gcd(b,a%b);}
template<class T> T large(T a, T b ) {return a>b?a:b;}
template<class T> T small(T a, T b ) {return a<b?a:b;}
template<class T> T diffrnce(T a, T b) {return a-b<0?b-a:a-b;}
int prime[(mx4 >> 6)+1];
#define setbit(n) (prime[n>>6]|=(1<<((n>>1)&31)))
#define checkbit(n) (prime[n>>6]&(1<<((n>>1)&31)))
#define qrt 10000
vector<int>prm;
int plen;
void seieve()
{
int i,j;
for(i=3;i<=qrt;i+=2)
{
if(!checkbit(i))
{
for(j=i*i;j<=mx4;j+=i+i)
{
setbit(j);
}
}
}
// prm.push_back(2);
//
// for(i=3;i<=mx4;i+=2)
// {
// if(!checkbit(i))
// {
// prm.push_back(i);
// }
// }
//
// plen=prm.size();
//lp1(i,plen)cp(prm[i]);
}
bool isPrime(int n)
{
if(!(n&1) or n<2)
{
return false;
}
else
{
return (!checkbit(n));
}
return true;
}
int main()
{
seieve();
int n;
while(~sf("%d",&n))
{
if(n&1)
{
if(isPrime(n-2))
{
pf("%d is the sum of 2 and %d.\n",n,n-2);
}
else
{
pf("%d is not the sum of two primes!\n",n);
}
}
else
{
int div=n/2;
bool f=false;
for(int i=div;i<n;i++)
{
int b = n-i;
if(isPrime(b) and isPrime(i) and b!=i)
{
pf("%d is the sum of %d and %d.\n",n,b,i);
f=true;
break;
}
}
if(!f)
{
pf("%d is not the sum of two primes!\n",n);
}
f=false;
}
}
return 0;
}
Comments
Post a Comment