Uva 10290 - {Sum+=i++} to Reach N
Problem Link:: sum i to reach n
Solution Trick :: Way to express a number by Consecutive Sum of integers
Solution Trick :: Way to express a number by Consecutive Sum of integers
// Verdict :: Accepted // Time :: 0.706 /// Header file begin #include <iostream> #include <cstdio> #include <cstring> #include <map> #include <string> #include <vector> #include <cmath> #include <cctype> #include <sstream> #include <set> #include <list> #include <stack> #include<utility> #include <queue> #include <algorithm> /// End //.......... /// Macro #define sf scanf #define pf printf #define sfint(a,b) scanf("%d %d",&a,&b) #define sfl(a,b) scanf("%ld %ld",&a,&b) #define sfll(a,b) scanf("%lld %lld",&a,&b) #define sfd(a,b) scanf("%lf %lf",&a,&b) #define sff(a,b) scanf("%f %f",&a,&b) #define lp1(i,n) for(i=0;i<n;i++) #define lp2(i,n) for(i=1;i<=n;i++) #define mem(c,v) memset(c,v,sizeof(c)) #define cp(a) cout<<" "<<a<<" "<<endl #define nl puts("") #define sq(x) ((x)*(x)) #define all(x) x.begin(),x.end() #define reall(x) x.rbegin(),x.rend() #define sz size() #define gc getchar() #define pb push_back /// End......... /// Size #define mx7 20000100 #define mx6 1500000 #define mx5 100005 #define mx4 1000100 #define inf 1<<30 //infinity value #define eps 1e-9 #define mx (65540) #define mod 1000000007 #define pi acos(-1.0) /// Macros for Graph #define white 0 #define gray 1 #define black -1 #define nil -2 using namespace std; //.................................................................................................................. typedef long long LL; typedef long L; typedef unsigned long long ull; typedef unsigned long ul; typedef unsigned int ui; typedef pair<int, int> pii; map<int,int>mpii; map<char,int>mpc; map<string,int>mpsi; map<bool,int>mpbi; template<class T> T gcd(T a, T b ) {return b<=0?a:gcd(b,a%b);} template<class T> T large(T a, T b ) {return a>b?a:b;} template<class T> T small(T a, T b ) {return a<b?a:b;} template<class T> T diffrnce(T a, T b) {return a-b<0?b-a:a-b;} LL prime[(mx7>>6)+1],prm[(mx7>>1)+5],plen=0; #define setbit(n) (prime[n>>6] |= (1<<((n>>1) & 31))) #define checkbit(n) (prime[n>>6] & (1<<((n>>1) & 31))) // Finding Primes by Seieve void seieve(LL n) { LL i,j,x=(long)sqrt(double(n)); for(i=3;i<=x;i+=2) { if(!checkbit(i)) { for(j=i*i;j<=n;j+=i+i) { setbit(j); } } } prm[plen++]=2; for(i=3;i<=n;i+=2) { if(!checkbit(i)) { prm[plen++]=i; } } //lp1(i,plen)cout << prm[i] << " "; } LL way(LL n) { LL m=1; for(int i=0;i<plen and sq(prm[i])<=n;i++) { if(!(n%prm[i])) { LL s=1; while(!(n%prm[i])) { //s++; if(n&1)s++; // Count all Odd number's factors n/=prm[i]; if(n==0 or n==1) break; } if(n&1) { m*=s; } //m*=s; } } if(n>1) { m*=2; } //m--; return m; } int main() { seieve(mx7); LL n; while(~sf("%lld",&n)) { pf("%lld\n",way(n)); } return 0; }
Comments
Post a Comment