Uva 11466 - Largest Prime Divisor

Problem Link:: 11466 - Largest Prime Divisor
Category:: Number Theory, Seieve-Prime,Divisor.

// A very good problem for Divisor and Prime numbers

 // Verdict:: Accepted
// Time:: 0.096
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <cmath>
#include <cctype>
#include <sstream>
#include <set>
#include <list>
#include <stack>
#include <queue>
#include <algorithm>
#define sf scanf
#define pf printf
#define sfint(a,b) scanf("%d %d",&a,&b)
#define sfl(a,b) scanf("%ld %ld",&a,&b)
#define sfll(a,b) scanf("%lld %lld",&a,&b)
#define sfd(a,b) scanf("%lf %lf",&a,&b)
#define sff(a,b) scanf("%f %f",&a,&b)
#define lp1(i,n) for(i=0;i<n;i++)
#define lp2(i,n) for(i=1;i<=n;i++)
#define LL long long
#define L long
#define mem(c,v) memset(c,v,sizeof(c))
#define ui unsigned int
#define cp(a) cout<<" "<<a<<" "<<endl
#define ull unsigned long long int
#define nl puts("")
#define sq(x) ((x)*(x))
#define all(x) x.begin(),x.end()
#define mx7 20000100
#define mx 10001000
#define mx6 1500000
#define mx5 100005
#define inf 1<<30                                           //infinity value
#define eps 1e-9
#define mx (65540)
#define mod 1000000007
#define pb push_back
#define pi acos(-1.0)
#define sz size()
#define gc getchar ()


using namespace std;
//..................................................................................................................

template<class T > T setbit(T n, T pos){n=n|(1<<pos); return n;}
template<class T > T checkbit(T n, T pos){n=n&(1<<pos); return n;}
template<class T> T gcd(T &a, T &b ) {return b==0?a:gcd(b,a%b);}
template<class T> T large(T &a, T &b ) {return a>b?a:b;}
template<class T> T small(T &a, T &b ) {return a<b?a:b;}

LL prime[mx7],prm[(mx7/2)+1],plen=0;

void seieve(LL n)
{
    LL i,j,x=(long)sqrt(double(n));

    prime[0]=setbit<LL>(prime[0],0);
    prime[0]=setbit<LL>(prime[0],1);

    for(i=4;i<=n;i+=2)
    {
        prime[i>>5]=setbit<LL>(prime[i>>5],i&31);
    }

    for(i=3;i<=x;i+=2)
    {
        if(!checkbit<LL>(prime[i>>5],i&31))
        {
            for(j=i*i;j<=n;j+=i)
            {
                prime[j>>5]=setbit<LL>(prime[j>>5],j&31);
            }
        }
    }

    for(i=2;i<=n;i++)
    {
        if(!checkbit<LL>(prime[i>>5],i&31))
        {
            prm[plen++]=i;
        }
    }

    //lp1(i,plen)cp(prm[i]);
}

vector<LL> v;

void divisor(LL n)
{
    for(LL i=0;i<plen and sq(prm[i])<=n;i++)
    {
        if(!(n%prm[i]))
        {
            while(!(n%prm[i]))
            {
                v.push_back(prm[i]);
                n/=prm[i];
                if(n==0 or n==1)
                {
                    break;
                }
            }
        }
    }

    if(n>1)
    {
        v.push_back(n);
    }

    sort(v.begin(),v.end());

    LL len=v.size();

    if(len<=1)
    {
        pf("-1\n");
    }

    else if(v[0] == v[len-1])
    {
        pf("-1\n");
    }

    else
    {
        pf("%lld\n",v[len-1]);
    }

    v.clear();
}

int main()
{
    seieve(mx7);
    LL n;
    while(1==(sf("%lld",&n)) and n)
    {
        if(n<0)
        {
            n*=-1;
        }

        divisor(n);
    }

    return 0;
}

Comments

Popular posts from this blog

SPOJ-CMG - Collecting Mango

Hackerearth Bishu and his Girlfriend

Uva 10650 - Determinate Prime