Uva 11466 - Largest Prime Divisor
Problem Link:: 11466 - Largest Prime Divisor
Category:: Number Theory, Seieve-Prime,Divisor.
// A very good problem for Divisor and Prime numbers
Category:: Number Theory, Seieve-Prime,Divisor.
// A very good problem for Divisor and Prime numbers
// Verdict:: Accepted
// Time:: 0.096
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <cmath>
#include <cctype>
#include <sstream>
#include <set>
#include <list>
#include <stack>
#include <queue>
#include <algorithm>
#define sf scanf
#define pf printf
#define sfint(a,b) scanf("%d %d",&a,&b)
#define sfl(a,b) scanf("%ld %ld",&a,&b)
#define sfll(a,b) scanf("%lld %lld",&a,&b)
#define sfd(a,b) scanf("%lf %lf",&a,&b)
#define sff(a,b) scanf("%f %f",&a,&b)
#define lp1(i,n) for(i=0;i<n;i++)
#define lp2(i,n) for(i=1;i<=n;i++)
#define LL long long
#define L long
#define mem(c,v) memset(c,v,sizeof(c))
#define ui unsigned int
#define cp(a) cout<<" "<<a<<" "<<endl
#define ull unsigned long long int
#define nl puts("")
#define sq(x) ((x)*(x))
#define all(x) x.begin(),x.end()
#define mx7 20000100
#define mx 10001000
#define mx6 1500000
#define mx5 100005
#define inf 1<<30 //infinity value
#define eps 1e-9
#define mx (65540)
#define mod 1000000007
#define pb push_back
#define pi acos(-1.0)
#define sz size()
#define gc getchar ()
using namespace std;
//..................................................................................................................
template<class T > T setbit(T n, T pos){n=n|(1<<pos); return n;}
template<class T > T checkbit(T n, T pos){n=n&(1<<pos); return n;}
template<class T> T gcd(T &a, T &b ) {return b==0?a:gcd(b,a%b);}
template<class T> T large(T &a, T &b ) {return a>b?a:b;}
template<class T> T small(T &a, T &b ) {return a<b?a:b;}
LL prime[mx7],prm[(mx7/2)+1],plen=0;
void seieve(LL n)
{
LL i,j,x=(long)sqrt(double(n));
prime[0]=setbit<LL>(prime[0],0);
prime[0]=setbit<LL>(prime[0],1);
for(i=4;i<=n;i+=2)
{
prime[i>>5]=setbit<LL>(prime[i>>5],i&31);
}
for(i=3;i<=x;i+=2)
{
if(!checkbit<LL>(prime[i>>5],i&31))
{
for(j=i*i;j<=n;j+=i)
{
prime[j>>5]=setbit<LL>(prime[j>>5],j&31);
}
}
}
for(i=2;i<=n;i++)
{
if(!checkbit<LL>(prime[i>>5],i&31))
{
prm[plen++]=i;
}
}
//lp1(i,plen)cp(prm[i]);
}
vector<LL> v;
void divisor(LL n)
{
for(LL i=0;i<plen and sq(prm[i])<=n;i++)
{
if(!(n%prm[i]))
{
while(!(n%prm[i]))
{
v.push_back(prm[i]);
n/=prm[i];
if(n==0 or n==1)
{
break;
}
}
}
}
if(n>1)
{
v.push_back(n);
}
sort(v.begin(),v.end());
LL len=v.size();
if(len<=1)
{
pf("-1\n");
}
else if(v[0] == v[len-1])
{
pf("-1\n");
}
else
{
pf("%lld\n",v[len-1]);
}
v.clear();
}
int main()
{
seieve(mx7);
LL n;
while(1==(sf("%lld",&n)) and n)
{
if(n<0)
{
n*=-1;
}
divisor(n);
}
return 0;
}
Comments
Post a Comment