Uva 11064 - Number Theory

/*
 Thanks to Rafik Forhad.
 Member of team :: SUST_NFS_JAGUYAR
His Code:: Rofik Forhad's Code of Number Theory Problem
*/

 
// Verdict :: Accepted
// Time:: 0.006
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <cmath>
#include <cctype>
#include <sstream>
#include <set>
#include <list>
#include <stack>
#include <queue>
#include <algorithm>
#define sf scanf
#define pf printf
#define sfint scanf ("%d %d",&a,&b)
#define sfl scanf ("%ld %ld",&a,&b)
#define sfll scanf ("%lld %lld",&a,&b)
#define sfd scanf ("%lf %lf",&a,&b)
#define sff scanf ("%f %f",&a,&b)
#define lp1(i,n) for(i=0;i<n;i++)
#define lp2(i,n) for(i=1;i<=n;i++)
#define LL long long
#define L long
#define mem(c,v) memset(c,v,sizeof(c))
#define ui unsigned int
#define ull unsigned long long int
#define nl puts("")
#define sq(x) ((x)*(x))
#define MX 1000005
#define N 100
#define MOD 10000000007
#define pb push_back
#define pi acos(-1.0)
#define sz size()
#define gc getchar ()
#define ps push
#define clr clear
#define inf 2147483647
#define bn begin()
#define ed end()

using namespace std;

ull prime[MX+15],p[MX+15],plen=0;

ull setbit(ull n, ull pos)
{
    n=n|(1<<pos);
    return n;
}

ull checkbit(ull n, ull pos)
{
    n=n&(1<<pos);
    return n;
}

void seieve(ull n)
{
    ull i,j,x=sqrt(n);

    prime[0]=setbit(prime[0],0);
    prime[0]=setbit(prime[0],1);

    for(i=4;i<=n;i+=2)
    {
        prime[i>>5]=setbit(prime[i>>5],i&31);
    }

    for(i=3;i<=x;i+=2)
    {
        if(!checkbit(prime[i>>5],i&31))
        {
            for(j=i*i;j<=n;j+=i)
            {
                prime[j>>5]=setbit(prime[j>>5],j&31);
            }
        }
    }

    for(i=1;i<=n;i++)
    {
        if(!checkbit(prime[i>>5],i&31))
        {
            //cout << i << " ";
            p[plen++]=i;
        }
    }
}

//void euler_phi()
//{
//    ull i,j,k,p;
//
//    for(i=1;i<=MX;i++) phi[i]=i;
//
//    for(p=2;p<=MX;p++)
//    {
//        if(!checkbit(prime[p>>5],p&31))
//        {
//            if(phi[p]==p)
//            {
//                for(k=p;k<=MX;k+=p)
//                {
//                    phi[k]-=phi[k]/p;
//                }
//            }
//        }
//    }
//}

void divisors(ull n)
{
    ull i,m=1,s,phi=n,take=n;

    for(i=0; i<=plen and sq(p[i])<=n ; i++)
    {
        if(!(n%p[i]))
        {
            s=1;
            phi-=phi/p[i];
            while(!(n%p[i]))
            {
                s++;
                n/=p[i];
                //phi-=phi/p[i];
                if(n==0 or n==1) break;
            }

            m*=s;
        }

        //m*=s;
    }

    if(n!=1)
    {
        m*=2;
        phi-=phi/n;
    }


//    cout << "phi = " << phi;
//    return m;

        pf("%llu\n",take-phi-(m-1));
}

int main()
{
    seieve(MX);
    //for(ull i=0;i<plen;i++) cout << p[i] << " ";
//    euler_phi();
    //cout << phi[8];

    ull n;

    while(sf("%llu",&n)==1)
    {
        if(!n) break;

//        euler_phi(n);
//
//        ull t = divisors(n)-1; //cout << t;
//       pf("%llu\n", n - phi - t );
//       cout <<"n = " << n << " phi= " << phi[n] << " t = " << t << " ";

            divisors(n);
    }

    return 0;
}

Comments

Popular posts from this blog

SPOJ-CMG - Collecting Mango

Hackerearth Bishu and his Girlfriend

Uva 10650 - Determinate Prime