Uva 11064 - Number Theory
/*
Thanks to Rafik Forhad.
Member of team :: SUST_NFS_JAGUYAR
His Code:: Rofik Forhad's Code of Number Theory Problem
*/
Thanks to Rafik Forhad.
Member of team :: SUST_NFS_JAGUYAR
His Code:: Rofik Forhad's Code of Number Theory Problem
*/
// Verdict :: Accepted
// Time:: 0.006
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <cmath>
#include <cctype>
#include <sstream>
#include <set>
#include <list>
#include <stack>
#include <queue>
#include <algorithm>
#define sf scanf
#define pf printf
#define sfint scanf ("%d %d",&a,&b)
#define sfl scanf ("%ld %ld",&a,&b)
#define sfll scanf ("%lld %lld",&a,&b)
#define sfd scanf ("%lf %lf",&a,&b)
#define sff scanf ("%f %f",&a,&b)
#define lp1(i,n) for(i=0;i<n;i++)
#define lp2(i,n) for(i=1;i<=n;i++)
#define LL long long
#define L long
#define mem(c,v) memset(c,v,sizeof(c))
#define ui unsigned int
#define ull unsigned long long int
#define nl puts("")
#define sq(x) ((x)*(x))
#define MX 1000005
#define N 100
#define MOD 10000000007
#define pb push_back
#define pi acos(-1.0)
#define sz size()
#define gc getchar ()
#define ps push
#define clr clear
#define inf 2147483647
#define bn begin()
#define ed end()
using namespace std;
ull prime[MX+15],p[MX+15],plen=0;
ull setbit(ull n, ull pos)
{
n=n|(1<<pos);
return n;
}
ull checkbit(ull n, ull pos)
{
n=n&(1<<pos);
return n;
}
void seieve(ull n)
{
ull i,j,x=sqrt(n);
prime[0]=setbit(prime[0],0);
prime[0]=setbit(prime[0],1);
for(i=4;i<=n;i+=2)
{
prime[i>>5]=setbit(prime[i>>5],i&31);
}
for(i=3;i<=x;i+=2)
{
if(!checkbit(prime[i>>5],i&31))
{
for(j=i*i;j<=n;j+=i)
{
prime[j>>5]=setbit(prime[j>>5],j&31);
}
}
}
for(i=1;i<=n;i++)
{
if(!checkbit(prime[i>>5],i&31))
{
//cout << i << " ";
p[plen++]=i;
}
}
}
//void euler_phi()
//{
// ull i,j,k,p;
//
// for(i=1;i<=MX;i++) phi[i]=i;
//
// for(p=2;p<=MX;p++)
// {
// if(!checkbit(prime[p>>5],p&31))
// {
// if(phi[p]==p)
// {
// for(k=p;k<=MX;k+=p)
// {
// phi[k]-=phi[k]/p;
// }
// }
// }
// }
//}
void divisors(ull n)
{
ull i,m=1,s,phi=n,take=n;
for(i=0; i<=plen and sq(p[i])<=n ; i++)
{
if(!(n%p[i]))
{
s=1;
phi-=phi/p[i];
while(!(n%p[i]))
{
s++;
n/=p[i];
//phi-=phi/p[i];
if(n==0 or n==1) break;
}
m*=s;
}
//m*=s;
}
if(n!=1)
{
m*=2;
phi-=phi/n;
}
// cout << "phi = " << phi;
// return m;
pf("%llu\n",take-phi-(m-1));
}
int main()
{
seieve(MX);
//for(ull i=0;i<plen;i++) cout << p[i] << " ";
// euler_phi();
//cout << phi[8];
ull n;
while(sf("%llu",&n)==1)
{
if(!n) break;
// euler_phi(n);
//
// ull t = divisors(n)-1; //cout << t;
// pf("%llu\n", n - phi - t );
// cout <<"n = " << n << " phi= " << phi[n] << " t = " << t << " ";
divisors(n);
}
return 0;
}
Comments
Post a Comment